
Genetics of Pancreatic Cancer

Michaël Noë

Resident, UMC Utrecht, The Netherlands

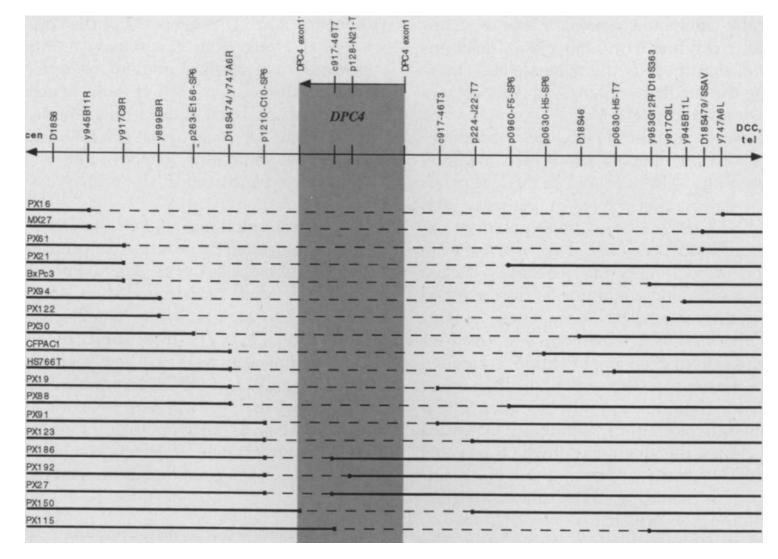
Post-doctoral Research Fellow, Johns Hopkins University, USA

WHO: 5th edition

WHO Classification of Tumours • 5th Edition

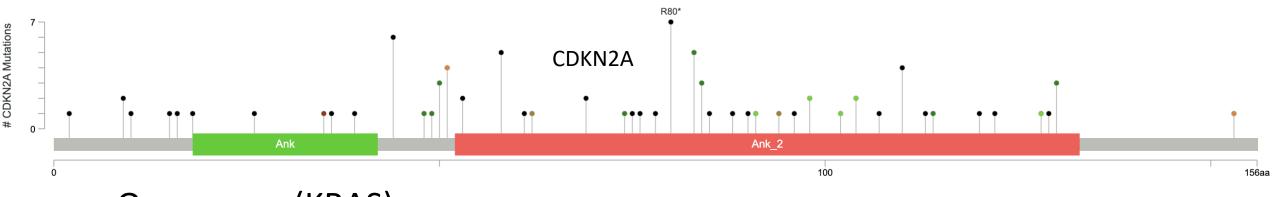
Digestive System Tumours

Edited by the WHO Classification of Tumours Editorial Board

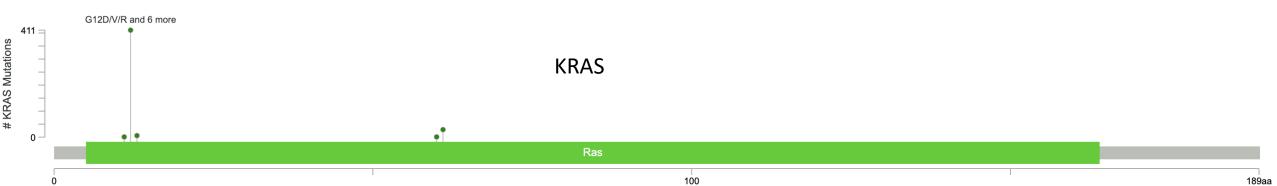


Diagnostic molecular pathology Not clinically relevant

History of the genetics of pancreatic cancer


- 1982: KRAS discovered in pancreatic cancer cell lines
 - Similarities with Rous Sarcoma Virus
- 1995: DPC1 & DPC2 discovered (later: BRCA2)
 - 'Deleted in Pancreatic Cancer'
 - Finding spots of homozygous deletions in cancer cell lines (RDA)
- 1994: DPC3 discovered (later: P16, CDKN2A)
- 1996: DPC4 discovered (later: SMAD4)

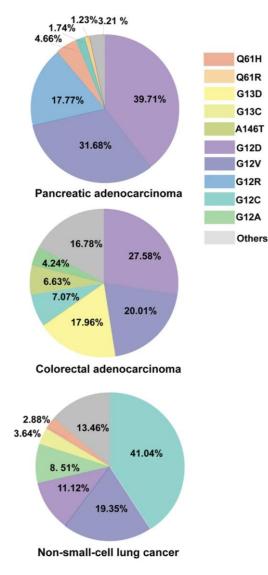
DPC: Deleted in Pancreatic Cancer



Tumor Suppressors vs. Oncogenes

- Tumor suppressors (CDKN2A, TP53, SMAD4)
 - many ways to break them (chaos = more entropy)

- Oncogenes (KRAS)
 - Only a couple of ways to make it work better / more (structure = less entropy)

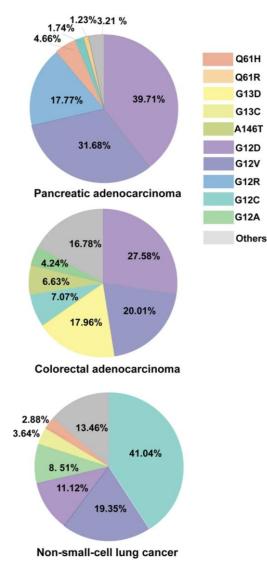


Pancreatic cancer: driver genes

- KRAS
- CDKN2A (P16)
- TP53
- SMAD4 (immunohistochemistry if it works)

Pancreatic cancer: driver genes

- KRAS
- CDKN2A (P16)
- TP53
- SMAD4

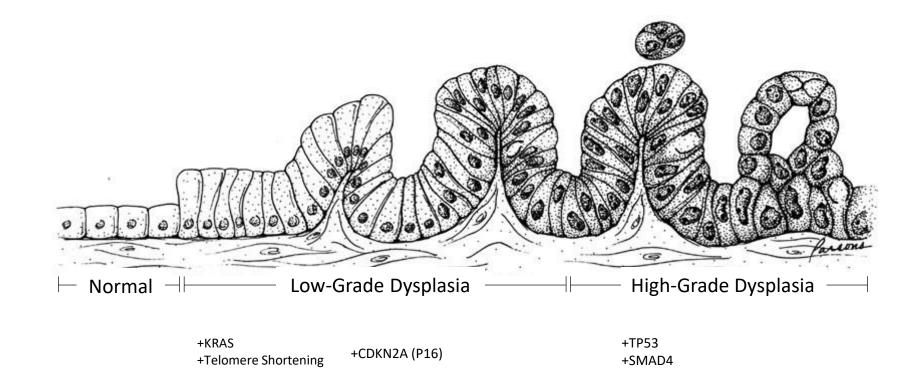


Different KRAS-mutations in different cancers: reflection of different impact of carcinogens

- Smoking (C>A)
- Bacteria
- Aging
- APOBEC
- etc...

Pancreatic cancer: driver genes

- KRAS
- CDKN2A (P16)
- TP53
- SMAD4



→ Sotorasib: irreversible inhibitor of KRAS G12C (1-2%)

- ASCO 2022: CodeBreaK100 study showed effect of the therapy in pancreatic cancer patients
 - Partial response: 21%
 - Disease control: 84%

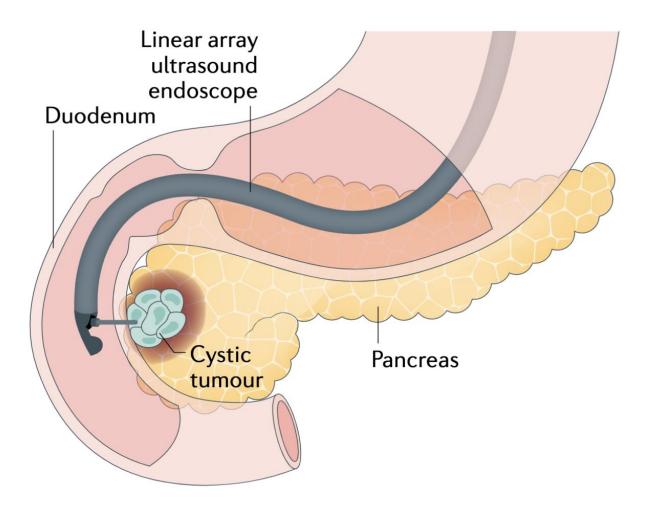
From precursor to carcinoma (PDAC)

• Deciphering the pathogenesis:

Precursors to pancreatic ductal adenocarcinoma (PDAC)

Precursor	Malignant	Mutations
PanIN	PDAC	KRAS, CDKN2A, TP53, SMAD4
IPMN	PDAC-light	KRAS, <u>GNAS</u> , CDKN2A, <u>RNF43</u> , TP53, SMAD4
IOPN	PDAC-light	Fusions between ATP1B1 / DNAJB1 and PRKACA / PRKACB
MCN	PDAC-light	KRAS, CDKN2A, <u>RNF43</u> , TP53, SMAD4
ITPN	PDAC	PIK3CA, PTEN, KMT2A, KMT2B, KMT2C, FGFR2 fusions
SCAdenoma	SCAdenocarcinoma?	VHL
	SPN	CTNNB1
	Acinar Cell Carcinoma	BRCA2, CHEK2, FAT

PanIN: Pancreatic Intraepithelial Neoplasia PDAC: Pancreatic Ductal Adenocarcinoma IPMN: Intraductal Papillary Mucinous Neoplasm IOPN: Intraductal Oncocytic Papillary Neoplasm MCN: Mucinous Cystic Neoplasm ITPN: Intraductal Tubulopapillary Neoplasm SCAdenoma: Serous Cystadenoma SPN: Solid Pseudopapillary Neoplasm


DNAJB1 - PRKACA fusions: also seen in fibrolamellar hepatocellular carcinoma

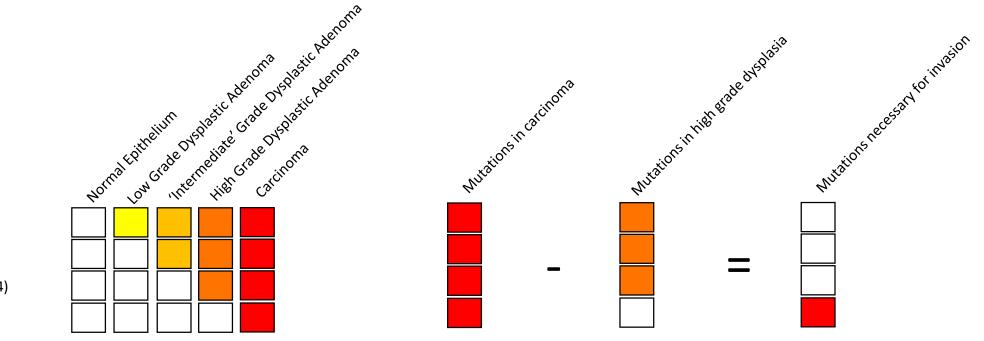
PDAC is molecular heterogenic

Small amounts of targetable driver-mutations

- Microsatellite instability (immunotherapy)
- ERBB2 amplifications (trastuzumab)
- Targets for Kinase Inhibitors (BRAF, FGFR2, FGFR3,...)
- Homologous Repair Deficiency (BRCA2, ATM,...)

Application: cyst fluid analysis

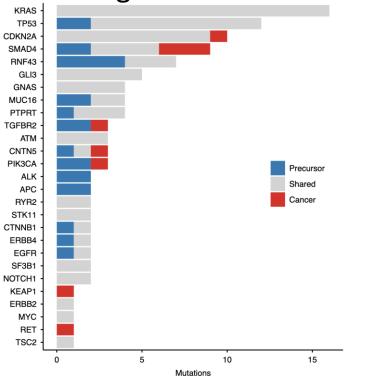
Diagnosis of cysts:


- Enzymes (CEA and amylase)
- Driver mutation analysis

Risk stratification of IPMNs / MCNs:

• TP53, SMAD4: invasion

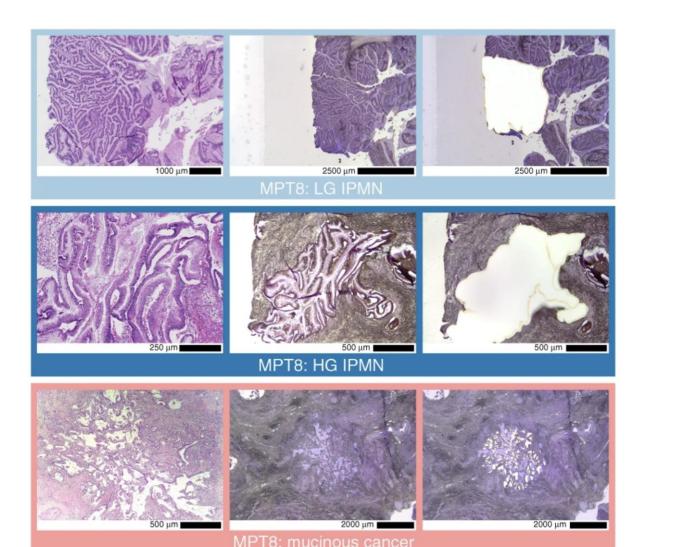
Discovering the driver mutations for invasion


- Vogelstein et al., New England Journal of Medicine, 1988:
 - FAP patients
 - Try to detect the previously discovered molecular aberrations of colorectal cancers in adenomatous polyps

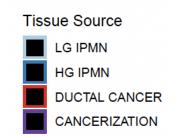
Loss of APC KRAS mutations Loss of 18q (SMAD4) Loss of 17p (TP53)

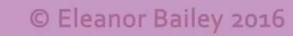
IPMN to PDAC: driving invasion

- Deciphering the pathogenesis (whole-exome sequencing):
 - 4/18 cases had cancer specific SMAD4/TGFBR2 mutations
 - Other cancer-specific driver-genes were CDKN2A, CNTN5, PIK3CA, KEAP1 and RET

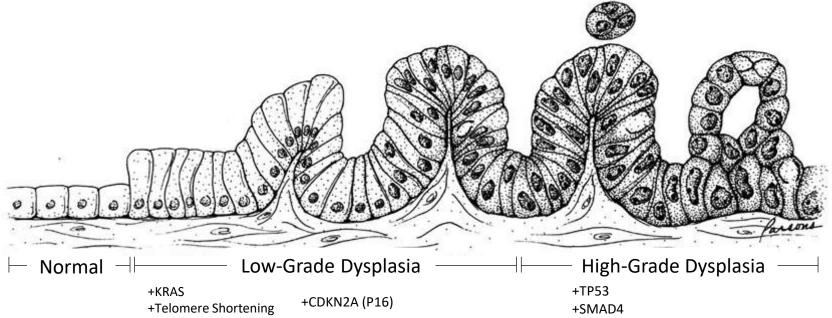


Noë M. et al. Genomic characterization of malignant progression in neoplastic pancreatic cysts. Nat Commun. 2020


Association, but not always causation


- Clonal relationship between concurrent IPMN and PDAC:
 - 1/3 of IPMNs in patients with a PDAC is not clonally related!
 - Different driver mutations
 - Probably a smaller PanIN lesion resulted in the PDAC
 - Reporting:
 - Just describe what you see (IPMN, PanIN and PDAC)
 - Use of 'Malignant IPMN' is discouraged

Cancerization: molecular evidence



KRAS:G12R KRAS:Q61H-12:25380275 T/G KRAS:Q61H-12:25380275 T/A TMEM56-RWDD3:c.566+2T>C [SP] KCNA5:A451A C17orf98:T142M DUSP27:T652T ADAMTS12:P429L COL12A1:R933H SCAF8:G961V TMEM246:A372A MCM10:E613K PNLIPRP1:T465T C13orf35:L33L SMAD6:L179L GRIN2A:S397S AP1G1:T798T DDDDDDD TP53:E171* FCH01:c.2247+1G>C [SP] LRFN1:S632S THE PERSON NUMBER OF STREET LOH:chr17:0.01-18.26 ABR:F645S ALPK1:R873R LOH:chrX:2.75-48.42 DEL:chr9:21.8-23.77(CDKN2A) BSN:D861N SUPT6H:1104T PLEKHF1:D258D LOH:chr22:17.16-51.12 LTBR:R425G ACOT11:R306L OR6N1:Y120Y ENPP5:Y341Y ITGB3:C562* BTK:P116T SLC1A7:G465D FGF3:R104Q ZBED4:P1100L SIM1:R192C PHC1:S627C MS4A1:T41T LOH:chr7:127.25-158.72 SH2D5:R199W RNPEPL1:G413V GAL3ST2:P85P JADE2:N352S HHLA1:A97V TMEM141:Q61Q BPTF:R296H KLHL22:R603R GALE:Q261L ANKS4B:Q368R KRI1:S326S OR812:C240C LRTM2:G319V LOH:chr9:71.23-139.96 LAMB3:R887L SPTAN1:I1484F TP53:R175H

Implications of the Driver Mutations Sequence

- The sequence is important to evaluate risk from germline mutations
 - CDKN2A (P16): early driver mutation in PDAC
 - Germline mutations: Familial Atypical Multiple Mole Melanoma syndrome (FAMMM) have high risk for PDAC
 - SMAD4: late driver mutation in PDAC
 - Germline mutations: Juvenile Polyposis syndrome have normal / low risk for PDAC

Conclusions

- KRAS is targetable
- Small amount of PDACs harbour targetable driver mutations
- PDAC is heterogeneous and subgroups have different prognosis
 - Precursors have different mutations, which can be used for diagnosis on cyst fluid
 - Small amount of PDACs have targetable driver mutations
- Co-occurring IPMNs and PDACs are not always related
- PDACs can grow back in ducts and present as 'precursor' lesion

Thank you

Prof. Dr. Ralph Hruban Prof. Dr. Victor Velculescu Prof. Dr. Offerhaus Prof. Dr. Scott Kern Prof. Dr. Anne Hoorens Dr. Laura Wood Dr. Lodewijk Brosens