

Next generation sequencing: basic principles Claude Van Campenhout

MOLECULAR PATHOLOGY COURSE FOR RESIDENTS IN PATHOLOGY

Introduction

____ 1953 : Discovery of DNA double helix structure

(Watson & Crick & Franklin)

– 1973 : First sequence of 24 bp sequenced (Gilbert & Maxam)

- 1977 : Sanger sequencing method published

Frederick Sanger (13 August 1918 – 19 November 2013) was an English <u>biochemist</u> University of Cambridge, UK

- In 1958, he was awarded a Nobel Prize in Chemistry "for his work on the <u>structure of</u> <u>proteins</u>, especially that of <u>insulin</u>". He identified how the amino acid chains are linked together.
- In 1980, <u>Walter Gilbert</u> and Sanger shared half of the chemistry prize "for their contributions concerning the determination of base <u>sequences in nucleic acids</u>".

Sanger Sequencing (1977)

Proc. Natl. Acad. Sci. USA Vol. 74, No. 12, pp. 5463-5467, December 1977 Biochemistry

DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage \$\$\phi_X174\$)

F. SANGER, S. NICKLEN, AND A. R. COULSON

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England

Contributed by F. Sanger, October 3, 1977

ABSTRACT A new method for determining nucleotide sequences in DNA is described. It is similar to the "plus and minus" method [Sanger, F. & Coulson, A. R. (1975) J. Mol. Biol. 94, 441-448] but makes use of the 2',3'-dideoxy and arabinonucleoside analogues of the normal deoxynucleoside triphosphates, which act as specific chain-terminating inhibitors of DNA polymerase. The technique has been applied to the DNA of bacteriophage ϕ X174 and is more rapid and more accurate than either the plus or the minus method.

New method for determining nucleotide sequences in DNA

Introduction

____ 1953 : Discovery of DNA double helix structure

(Watson & Crick & Franklin)

— 1973 : First sequence of 24 bp sequenced (Gilbert & Maxam)

1977 : Sanger sequencing method published

_ 1983 : development of PCR

1987 : 1st automated sequencer : Applied Biosystems Prism 37

Sanger Sequencing

First generation sequencing (semi-automated)

Proc. Natl. Acad. Sci. USA Vol. 74, No. 12, pp. 5463-5467, December 1977 Biochemistry

DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage \$X174)

F. SANGER, S. NICKLEN, AND A. R. COULSON

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England

Contributed by F. Sanger, October 3, 1977

Sanger Sequencing

Advantages and limitations:

- $\checkmark\,$ Standard and most widely used method
- ✓ Long Read length (up to 800 bp)

- Low throughput (1-96 reads/run)
- Limited output: +/- 80 000 bases per run
 - E.g. 1 single gene for 100 patients or 100 genes for 1 single patient
- Sequence mixture

Sanger Sequencing: limitations

Sanger sequencing

Position	Genotype
170	С
176	T/C

Up to 1000 bases 1 region at a time Sensitivity around 20%

Introduction

 1953 : Discovery of DNA double helix structure (Watson & Crick & Franklin)

- 1973 : First sequence of 24 bp sequenced (Gilbert & Maxam)
 1977 : Sanger sequencing method published
- ____ 1983 : development of PCR
 - ____ 1987 : 1st automated sequencer : Applied Biosystems Prism 37

1996 : Capillary sequencer : ABI 310

2003 : Human genome sequenced

February 2001

The human genome project

- The human genome project : Started in 1990 by the NIH & the U.S.
 Department of Energy:
 - Sequence the 3 billion base of the human genome
 - Discover the 20.000 human genes

• Lasted 13 years \rightarrow Cost 3 billion \$ (1\$/base)

The human genome project

Adapted from

- The human genome project : Started in 1990 by the NIH & the U.S. Department of Energy:
 - Sequence the 3 billion base of the human genome
 - Discover the 20.000 human genes
- Lasted 13 years →Cost 3 billion \$ (1\$/base)

- 2008: James Watson: 2 years, \$2 million (NGS)
- 2009: 6 months, \$200,000
- 2010: 1 month, \$20,000
- 2011: 2 weeks, \$5,000
- 2012 : 2 weeks, \$3,000
- 2015(?): <2 days, <\$1,000

Next Generation Sequencing

"Next-Generation" Sequencing technologies enable:

- ✓ Rapid generation of data
- ✓ By sequencing massive amounts of DNA (shorter read lengths)
- ✓ In parallel on a microchip (in a single reaction)

"Massive Parallel Sequencing"

"High Throughput Sequencing" : +/- 800 000 000 000 bp per run

E.g. many gene fragments for many patients or whole exomes/genomes ...

✓ Has enabled revolution in cancer research

Source: Jason M. Rizzo and Michael J. Buck. Key Principles and Clinical Applications of "Next-Generation" DNA Sequencing. Cancer Prev Res; 5(7) 2012.

Sanger Sequencing vs NGS

- Sanger Sequencing
 - Low throughput (100kb)
 - High cost
 - Slow
 - Low sensitivity (20-30% of mutant DNA)
 - -> low coverage depth

- Next generation sequencing
 - High throughput (1-100 Gb)
 - Low cost
 - Fast
 - High sensitivity
 - -> high coverage depth

Sanger Sequencing vs NGS

Begin at the beginning and go on till you come to the end: then stop. Lewis Carroll, *Alice's Adventures in Wonderland*.

Sanger Sequencing vs NGS

Eva détestait cette expression, « garçon manqué ». Elle s'était toujours indignée que les filles, pratiquant des exercices assez physiques, soient apparentées à des garçons. Les êtres humains n'étant pas monolithiques, grimper aux arbres, par exemple, ne représentait pas une contradiction à l'exercice de la féminité. Eva partageait l'opinion qu'hommes et femmes devaient développer une multitude d'activités identiques dans différents registres. En ce domaine, le cinéma du XXIe siècle avait parfois suivi une évolution progressiste. La femme pouvait être forte physiquement, tout en gardant ses attraits ; même Blanche Neige en armure, interprétée par l'adorable Kristen Stewart, arc-en-cielée comme un cœur pur. Gustave se pencha vers Eva, susurrant sur le ton du conspirateur moyen.

 J'ai bien envie de leur balancer une mornifle dans les canines ou de leur claquer le beignet aux pommes.

 Attention de ne pas céder à des désirs incontrôlables. Ne te laisse pas envahir par la haine qui rend aveugle.

— Entre toi et les curés, je finirai donc aveugle et sourd. Pas la haine qui m'a envahi, mais les Pruscos. Je vais narrer à ces lambeaux humains que je leur griffe le nez. Le projet devrait occuper leur attention.

 M'étonnerait bien que cette perspective tigresque suffise, comme dirait l'autre.

 — Sait-on jamais, si ces cuistres ont décidé de faire une priorité de leur esthétique.

— Je n'ai pas l'impression que ces gangreneux donnent beaucoup dans le séduisant, rétorqua Eva. Ou alors, taxidermisés éventuellement.

— En fond de couloir de préférence.

— Et puis, à distance, en hauteur, question effluves, a priori, pas triste non plus, une haleine de chacal se roulant dans la charogne faisandée, précisa Eva. On dirait un tas d'immondices vivant. Un relooking radical au programme.

- Tu m'expliqueras plus tard ton affaire avec les radicaux.

— En fond de couloir de préférence.

— Et puis, à distance, en hauteur, question effluves, a priori, pas triste non plus, une haleine de chacal se roulant dans la charogne faisandée, précisa Eva. On dirait un tas d'immondices

toujours indignée que les filles, pratiquant des exercices assez physiques, soient apparentées à des garçons. Les êtres humains n'étant pas monolithiques, grimper aux arbres, par exemple, ne

- J'ai bien envie de leur balancer une mornifle dans les canines ou de leur claquer le beignet aux pommes.

nines ou de leur claquer le beignet aux pommes.

charogne faisandée, précisa Eva. On dirait un tas d'immondices vivant. Un relooking radical au programme.

Tu m'expliqueras plus tard ton affaire avec les radicaux.

Eva détestait cette expression, « garçon manqué ». Elle s'était toujours indignée que les filles, pratiquant des exercices assez

NGS: from WGS to targeted sequencing

=> whole exomes/genomes or many gene fragments for many patients

NGS: different technologies

Table 1

NGS platforms currently employed.

Sr. No.	Platform	Read length	Sequencing approach	
1	Illumina/ Solexa, Illumina, Inc.	30–40 bp	Sequencing by synthesis with reversible terminators	
2	ABI/SOLiD, Applied Biosystems	35 bp	Massively parallel sequencing by Ligation	
3	454/Roche FLX system, Roche Applied Science	200–300 bp	Pyrosequencing on solid support	
4	Ion Torrent	200 bp	Proton detection	

Next Generation Sequencing

 <u>Definition</u>: Technologies that share the ability to massively parallel sequence millions of DNA templates

NGS workflow

NGS workflow

DNA Library: capture

WGS/WES/Targeted sequencing

DNA Library: amplicon or capture

WGS/WES/Targeted sequencing

NGS workflow

Clonal Amplification

Sequencing

Reversible terminator sequencing

semiconductor sequencing

Reversible terminator sequencing

lon 510[™] Chip 2–3 M reads

lon 520[™] Chip **3–6 M reads**

lon 550™ Chip 100–130 M reads

4 nucleotides flow sequentially

No camera, just a pH sensor

NGS workflow

Data analysis (1)

17 juin 2022

Primary analysis

Base Calling

Signal

Primary analysis

- Trimming removing parts of reads
 - Removing adapters / barcodes
 - Removing parts of reads that have low quality
 - Quality control with FASTQC or Samstats tools

Base Quality Values

- Each base in a read also has assigned base quality value
- Base Quality values are in the Phred scale Defined as -10×log₁₀ (error probability) Predicts the probability of correct base call

Quality score interpretation

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

Quality Control

Unaligned Reads

Quality Control

Unaligned Reads

Aligned to Home sapiens hg19

585 M					
AQ17 Total Bases					

Alignment Quality

	AQ17	AQ20	Perfect
Total Number of Bases [bp]	585 M	563 M	522 M
Mean Length [bp]	108	106	100
Longest Alignment [bp]	334	334	334
Mean Coverage Depth [x]	0.2	0.2	0.2
Data analysis (1)

17 juin 2022

Secondary analysis

Alignment

GACGTG CCTCTCCCTCCCA

DNA Read

Reference genome (human : hg19)

Alignment / mapping

Variant calling

Secondary analysis

Annotation

barcode	sample_name	chrom	position	ref	variant	gene_id	type	allele_call	genotype	frequency	quality	coverage	allele_cov	aa_mut_type	cds_mut_syntax
IonXpress_005	22M01490	chr2	212578392	AAG	GAA	ERBB4	MNP	Heterozygous	AAG/GAA	17.1	2772.22	1366	234	none	
IonXpress_005	22M01490	chr2	212578380	AA	-	ERBB4	DEL	Heterozygous	AA/-	47.8	2772.22	1366	653	Intron	
IonXpress_005	22M01490	chr4	1807894	G	А	FGFR3	SNP	Homozygous	A/A	99.8	33729.2	2000	1995	Silent	
IonXpress_005	22M01490	chr4	1807922	G	А	FGFR3	SNP	Heterozygous	G/A	50.1	10742.2	1964	983	Intron.	
IonXpress_005	22M01490	chr4	55141055	А	G	PDGFRA	SNP	Homozygous	G/G	99.9	30314.8	1796	1795	Silent	
IonXpress_005	22M01490	chr7	55228053	А	т	EGFR	SNP	Homozygous	T/T	100.0	33779.1	1988	1988	Intron.	
IonXpress_005	22M01490	chr7	55249063	G	А	EGFR	SNP	Homozygous	A/A	99.8	33792.1	2000	1996	Silent	
IonXpress_005	22M01490	chr7	116435768	С	Т	MET	SNP	Homozygous	T/T	99.6	33621.5	1999	1992	Silent	
IonXpress_005	22M01490	chr7	140481402	С	G	BRAF	SNP	Heterozygous	C/G	6.8	180.741	1994	135	p.G469A	c.1406G>C
IonXpress_005	22M01490	chr11	534242	А	G	HRAS	SNP	Homozygous	G/G	99.4	7750.83	520	517	Silent	c.81T>C
IonXpress_005	22M01490	chr17	7579472	G	С	TP53	SNP	Heterozygous	G/C	49.8	4768.01	880	438	Polymorphism.	

Preferably HGVS nomenclature: http://www.hgvs.org/

Secondary analysis

Indel

• Variant calling

p11.22	q11 q12	q13.11	q1 3.2	q14.2	q15 q21	.2 q21.31	q21.33	q23.1	q23.3 q24.12	q24.23 q2
,	25.398.260 bp 		25.398.270 bp 	781	25.398.280 bp	1	25.398.290 bp 	1	25.398.300 bp	25.398.3
						Å				
						A				
						A				
						A				
						A	T		T	
						A				
						A				
						Å				
CTGT Q	ATCGTC I T	AAGGO LA	S K	TGCO	TACGCC V G	ACCAC G A	G C T C C A	ACTA V V	CCACAAG VL	TTTATAT K Y
				KRA	s					

SNP/MNP

Data analysis

17 juin 2022

Next generation sequencing: data analysis and pratical aspects

MOLECULAR PATHOLOGY COURSE FOR RESIDENTS IN PATHOLOGY

Cancer research by NGS

- ✓ Many complete tumor genomes have been sequenced
- ✓ Many mutations in "cancer genes" per tumor
- ✓ "Cancer is a disease of the genome"
- ✓ **New insight:** every tumor is different every patient is different

Number of mutations per tumor demonstrated by NGS

Cancer research by NGS

Translation to the clinic

More refined diagnosis and subtyping of tumors

Clinical findings + medical imaging + histology + immunophenotype

+ genome

Challenge for therapy

- ✓ New "targets" for therapy "targeted" therapy
 - Revolution in clinical research
- ✓ Selection of therapy based on the genome of the tumor

"personalized therapy" of cancer- "precision medicine"

Personalized medicine in oncology

Highly facilitated by NGS detection of DNA variants

Lung adenocarcinoma

Different genetic subtypes – different cancers

Chaft JE, Rimner A, Weder W, Azzoli CG, Kris MG, Cascone T. Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol. 2021 Sep;18(9):547-557.

Multiple EGFR mutations are found in NSCLCs T790M most associated with drug resistance

*The most clinically relevant mutation in exon 20. **1.** Sharma et al. Nat Rev Cancer 2007;7:169–81.

FDA approved targeted therapies in solid malignancies (2020)

GENE TARGET	NGS	GENOMIC ALTERATION	MALIGNANCY	THERAPEUTIC AGENTS
EML4-ALK*	+	Rearrangement	Lung Cancer	Crizotinib, Alectinib, Ceritinib, Brigatinib, Lorlatinib
BRAF*	+	Mutation	Melanoma	Vemurafenib, Dabrafenib, Trametinib, Cobi- metinib, Encorafenib, Binimetinib
		Mutation	Anaplastic thyroid cancer, lung cancer	Dabrafenib, trametinib
BRCA1/2*	+	Mutation	Ovarian Cancer, Prostate Cancer	Olaparib, Niraparib, Talazoparib, Rucaparib
		Mutation	Triple negative breast cancer	Olaparib
CKIT*	+	Mutation	GIST, Mastocytosis	Imatinib, Sunitinib, Regorafenib
EGFR*	+	Mutation	Lung Cancer	Erlotinib, Gefitinib, Afatinib, Osimertinib, Dacomitinib
EGFR*		Expression	Colon	Cetuximab, Panitumumab
			Lung Cancers	Necitumumab
HER2*		Amplification, overexpression	Breast Cancer	Trastuzumab, Lapatinib, Pertuzumab, Ado- trastuzumab emtansine, Neratinib
		Amplification, overexpression	Gastric Cancer	Trastuzumab
FGFR3, FGFR2*	+	Mutation	Bladder cancer	Erdafitinib
Homologous Recombinatio	on Deficiency (HRD)*	Composite	Ovarian cancer	Niraparib
C-KIT*	+	Mutation, expression	GIST	Imatinib, sunitinib, regorafenib
Mismatch Repair (MMR)*	+	Expression, mutation	Tumor-agnostic, MSI-H Cancers	Pembrolizumab
		Expression, mutation	Colorectal MSI-H Cancers	Nivolumab
NTRK*	+	Fusion	Tumor-agnostic, NTRK+ cancers	Entrectinib, larotrectinib
PDGFRA*	+	Mutation	GIST, Sarcoma	Imatinib, Sunitinib, Olaratumab
COL1A1-PDGFB	+	Rearrangement	Dermatofibrosarcoma protuberans	Imatinib
PDL-1*		Expression	Lung, triple negative breast, urothelial, cervi- cal cancer	Pembrolizumab, atezolizumab
PI3K*	+	Mutation	Breast Cancer	Alpelisib
SMO and PTCH1	+	Mutation	Basal Cell Carcinoma	Vismodegib, Sonidegib
K-RAS*	+	Mutation	Colon cancer	Cetuximab, panitumumab (in RAS-non mutated)
RET*	+	Mutation	Thyroid Cancer	Vandetanib, Cabozantinib, Lenvatinib
ROS-1*	+	Rearrangement	Lung cancer	Crizotinib, Entrectinib
VEGF/VEGFR		Expression	Kidney, Colon, Lung, Gastric, Cervix, Ovarian Cancers	Bevacizumab, Ramucirumab, Regorafenib, Ziv-aflibercept, Axitinib, Pazopanib, Suniti- nib, Sorafenib
CDK4/6		Amplification	Breast Cancer	Palbociclib, Ribociclib, Abemaciclib
mTOR	+	Mutation	Breast, Renal, Brain Cancers	Everolimus, Temsirolimus
Estrogen Receptor*		Expression	Breast Cancer	Tamoxifen, fulvestrant, anastrozole, letro- zole, exemestane, everolimus, palbociclib, ribociclib, abemaciclib
Androgen Receptor		Expression	Prostate Cancer	Abiraterone, Enzalutamide, Apalutamide, Darolutamide

Other applications of DNA variant detection

NGS versus traditional methods

Benefits in oncology

- ✓ Multiple anomalies at different genomic scales can be assayed simultaneously
- ✓ More sensitive than Sanger sequencing
- ✓ Single extraction and single test instead of multiple tests
 - Cost effective
 - Improved turn-around time by avoiding sequential testing
 - Tissue preservation many genes simultaneously assessed from single extraction
- Potential for discovery of novel actionable targets
- ✓ Extreme flexibility of analysis types
 - Many different genomic target types can be detected

Pre-analytics

Needle biopsy

preservation tissue structure

rage and hand	lling
---------------	-------

-

Recommendations

- min. 10% neoplastic cells
- tumor enrichment (macrodissection)
- no necrotic tissue or normal tissue
- fixation: min 6h, max 48h, in 10% neutral buffered formalin solution
 - FFPE storage: max ± 3years

INFORMATIONS SUR L'ECHANTILLON												
N° identification A-P :	Diagnostic A-P :											
Date du prélèvement :///	Heure du prélèvement :											
Date de fixation ://	Heure de fixation :											
Temps de fixation : \Box inconnu \Box < 6 heures	\Box 6 – 48 heures \Box > 48 heures											
Fixateur :	re fixateur :											
Nombre de blocs de paraffine envoyés : Nombre de lames blanches envoyées : date de	coupe :/											

Extraction Workflow

NGS workflow in Molecular Pathology

Basic workflow for NGS sequencing technologies

NGS reactions generate huge sequence data sets in the range of megabases (millions) to gigabases (billions)

Source: Good et al. Genome Biology 2014, 15:438

bottleneck

Importance of bioinformatics

Need of bioinformatics team / tools for:

- \checkmark the sequence alignment
- ✓ variant calling
- \checkmark variant filtration

=> to make sense of the huge amount of NGS data.

Bioinformatics...

In house OR Commercial softwares available:

- ✓ Highlander
- ✓ SophiaGenetics
- ✓ NetxGNEe (Softgenetics)
- ✓ DataReporter softwares from Illumina, Agilent, QiaGEN,...

BUT even after bioinformatics data analysis and filtration, NGS data still needs manual interpretation of those identified genes and variants.

Tertiary analysis

Variant analysis – Biological Interpretation

Tertiary analysis

- Li, MM *et al.* Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer. A Joint Consensus Recommendation of the Association for Molecular Pathology, Americal Society of Clinical Oncology, and Collage of American Pathologists. *J Mol Diagn 2017*, 19: 4-23.
- Sukhai, M. A. *et al.* A classification system for clinical relevance of somatic variants identified in molecular profiling of cancer. *Genet. Med.* 1–9 (2015). doi:10.1038/gim.2015.47

Databases for clinical classification

Various ones with various criteria:

- ✓ COSMIC
- ✓ cBioPortal
- ✓ My Cancer Genome
- ✓ ClinVar
- ✓ PubMed
- ✓ ...
- \Rightarrow Do not limit yourself to one option!
- ⇒ Look at: date of last update, levels of evidence, variant/tumor type/drug combination, ...

$\langle \rangle$		Ē	cancer.sanger.ac.uk	Ċ	0 1 1 +
COS Catalogue Of Somatic M	utations In Cancer				
Projects ▼ Data ▼ Tools	▼ News ▼ Help ▼	About V Search CC	DSMIC SEARCH		Login 🗸
Gene				GRCh	38 · COSMIC v82
КІТ	Gene view				
Gene view Image: Constraint of the second	The gene view histogr default. Restrict the v left. <u>Show more</u>	ram is a graphical view iew to a region of the g	of mutations across the gene. These m gene by dragging across the histogram	nutations are displayed at the amino acid le to highlight the region of interest, or by us	evel across the full length of the gene by ing the sliders in the filters panel to the
☑ Drug resistance □ ☑ Tissue distribution □	413 - 525	530 535	540 545 550 555	560 max: 413 G	
Genome browser Image: Comparison of the second se				A	
 ☑ Variants ☑ References <u>Reset page</u> 	Substitutions			G D	
Filters Show advanced filters				Presumed pa	thogenic mutation
RangeShow input fields1523 - 560977	0 Amino acid TPLL	IGFVIVAGMMC	p.M541L (c.1621A>C)	Clinical re	levance?
1 245 489 733 977	Pfam		Mutation count: 17		
Coordinate system					
 Amino-acid cDNA 					
Apply filters Reset filters	592 - Insertions				
	Deletions				
	CNV Gain				
	CNV Loss				6

Databases for clinical classification https://www.cbioportal.org/

516 Mutations: includes 120 duplicate mutations in patients with multiple samples (page 1 of 21)

Study of Origin T	Sample ID	Cancer Type Detailed	Protein Change	Annotation i 🔮 🔮 🔥 🕶	Mutation Type	Сору #	COSMIC	Allele Freq (T)	# Mut in Sample
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 💮 🔥	Missense		23294		2253
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		2150
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		1752
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		1186
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		2199
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		1352
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😔 🔥	Missense		23294		1755
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		1305
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		1260
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😔 🔥	Missense		23294		1687
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		1351
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	🎯 🛃 😳 🔥	Missense		23294		1270
Colorectal Adenocarcinoma (coadread_dfci_2016	Colorectal Adenocarcinoma	V600E	6 🕹 😔 🔥	Missense		23294		1079

🚯 🙆 Columns (10 / 277) 🗸

Q

Databases for clinical classification https://www.mycancergenome.org

MY CANCER GENOME & GENETICALLY INFORMED CANCER MEDICINE

Clinical Trials

Diseases Biomarkers

Drugs

Pathways

Biomarkers /	BRAF V600E	
S Back to Biomarkers Li	st Overview	
> Associated Gene	ic Gene Location [1]	7q34
Biomarkers	Pathways	Kinase fusions, MAP kinase signaling
> Associated Disea	ses Variant Type	Substitution - Missense
	Affected Exon Number	15
	Gene	BRAF
	Protein Domain [2]	Protein kinase
	SIFT Prediction [3]	Deleterious
	ClinVar Prediction [3]	Pathogenic

BRAF V600E is present in 3.05% of AACR GENIE cases, with colon adenocarcinoma, thyroid gland papillary carcinoma, cutaneous melanoma, melanoma, and lung adenocarcinoma having the greatest prevalence [4].

Top Disease Cases with BRAF V600E

Clinical Trials

View Clinical Trials for BRAF V600E

BRAF V600E serves as an inclusion eligibility criterion in 97 clinical trials, of which 71 are open and 26 are closed. Of the trials that contain BRAF V600E as an inclusion criterion, 1 is early phase 1 (1 open), 25 are phase 1 (17 open), 20 are phase 1/phase 2 (17 open), 44 are phase 2 (30 open), and 7 are phase 3 (6 open).

Trials with BRAF V600E in the inclusion eligibility criteria most commonly target melanoma, non-small cell lung carcinoma, colorectal carcinoma, malignant solid tumor, and multiple myeloma [5].

Example of output of commercial bioinformatics tool in a case of lung adenocarcinoma (Variant Studio, Illumina)

🕙 Illumina VariantStudio 3.0																					8 X
Home Annotation & Classification	Re	ports He	dp.																		~ 0
📄 😂 Open 💾 🔛	WE	WENT	-	Current Sample:	11-1737-00	389 🝷				Select A	II A Smaller	Save As Default									
New 🏠 Close Save Save As	Import	Add Variants	Import	View All Sam	ples		Remove	ent: 1. Primary filt	Anage Harage	ave Copy	Order A Larger	Apply Default									
Project	VCF	to sample	Folder	Samples			Sample	Filter	Favorites	Tai	ble Options	Layout									
Filters	4	Gene View											71.								4
General	~																				
Variant	~				$\mathbf{\wedge}$																
Gene	~	Gene	Chr	Coordinate Va	Alt	Read Depth	Classification	Variant	Consequence	Protein Amino Position Acids	HGVSc	:	HGVSp	COSMIC ID	dbSNP ID	Filters	ClinVar Accession	Transcript	Туре	Genotype	Exonic
Company		*																			
Consequence	~	TP53	17	7579472	99,73	8211 Be	nign	G>C/C	missense_variant	72 P/R	NM_000546.5:c.2150	C>G	NP_000537.3:p.Pro72Arg	COSM250061:C	rs1042522	PASS	RCV000152	NM_000546.5	snv	hom	yes
Population Frequency	*	TP53	17	7577124	45,62	3268 US	1	••• C>C/A	missense_variant	272 V/L	NM_000546.5:c.8140	G>T I	NP_000537.3:p.Val272Leu	COSM10859:CO	rs121912657	PASS	RCV000013	NM_000546.5	snv	het	yes
Cross Sample Subtraction	~	TP53	17	7577081	45,05	3270 PR	ES PATHOGENIC	T>T/C	missense_variant	286 E/G	NM_000546.5:c.8574	A>G	NP_000537.3:p.Glu286Gly	COSM251425:C		PASS		NM_000546.5	snv	het	yes
Family Based	~	EGFR	7	55259515	40,09	4749 P/	THOGENIC	••• T>T/G	missense_variant	858 L/R	NM_005228.3:c.2573	ST>G	NP_005219.2:p.Leu858Arg	COSM29578:CO	rs121434568	PASS	RCV000018	NM_005228.3	• snv	het	yes
Custom	~	CUNIVZA	9	219/1095	5,09	123		1>1/G	downsdieam_gene_v	U				COSM12492:CO	1	PASS		NR_0242/4.1	SILV	net	yes
Classification	~				V	\mathbf{V}	кеаа	Dep	τn												
					Var	riar	nt alle	ert le	duency	1											
					• • • •				9900109												
Apply Ellings - >																					
Apply Faters =>		🕶 🕶 🖣 Varia	ant 4 of 5	► ₩ H I ==					5												×
Clear Filters		Show Popula	ation Frequ	uencies 💟 Sho	w Transcript	Info 🔽	Show Custom Anno	tations 🔽 Show	ClinVar 📝 Show Cosmic						_		_				
		Variants Ge	enes No	-Call Regions																	
Filter History		(2 51																		

Classification of the variants

"Pathogenecity" versus "clinical relevance"

68

Clinically relevant genes in ...

Colorectal cancers:

✓ KRAS, NRAS, BRAF

Melanoma:

✓ BRAF, NRAS, KIT

Lung:

✓ EGFR, KRAS, (ALK, ROS1)

GIST:

✓ KIT, PDGFRA

- Actionable mutations
 - Predictive for good response (sensitivity mutation)
 - Predictive for lack of response (resistance mutation)
- Overlap "solid tumor panel"
- Most gene panels also contain emerging targets or frequently mutated genes without clinical relevance at present
- Typical panel contains 15 to 50 genes
- No world wide consensus on diagnostic gene panel composition
- ComPerMed initiative in Belgium

Importance of multidisciplinary approach

"molecular tumor board" – clinicians, radiologists, pathologists, geneticists, bioinformatician, ...

Clinical case information:

- Age, diagnosis, stage, clinical status
- Prior treatments for metastatic cancer
- Measurable disease?
- Sample being tested
- Other clinically relevant information (clinical trial eligibility)
- Specific question

Specimen and/or molecular data:

- Specimen for genomic testing
- Genomic test report

Nomenclature of variants

Reporting mutations

Standardized nomenclature to promote portability, enduring meaning, and accuracy

Human Genome Variation Society (HGVS): www.hgvs.org/mutnomen/

BRAF mutation analysis:

Mutation detected in codon 600, exon 15 (GTG to GAG) of the BRAF gene that would change the encoded amino acid from valine to glutamate (p.Val600Glu)

Guidelines

- Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer (*American group*). MM. Li, M. Datto, EJ. Duncavage *et al*. The Journal of Molecular Diagnostics 2017;19(1).
- The Belgian next generation sequencing guidelines for haematological and solid tumours. A. Hébrant, G. Froyen, B. Maes, *et al.* Belg J Med Oncol 2017;11(2):56-67.
- Pathological diagnosis and molecular testing in non-small cell lung cancer: Belgian guidelines. P. Pauwels, M. Remmelink, D. Hoton, *et al.* Belg J Med Oncol 2016;10(4):123-131.
- RAS-testing in colorectal cancer: Belgian guidelines. A. Jouret-Mourin, C. Cuvelier, P. Demetter, et al. Belg J Med Oncol 2015;9(5):183-90.
- \Rightarrow Flow charts for variant analysis (Biological classification of the variants)
- ⇒ But no world wide standardization Subjectivity remains

 \checkmark
NGS reporting - Main Challenges

To interpret the clinical genomic data:

- \checkmark accurately and unambiguously
- \checkmark in a timely manner
- Significant number of mutated genes have been identified in the major tumor types, although only a limited set have been shown to be "driver" mutations
 - Of those, the number of "actionable" mutations remains limited
 - Challenge for report to clinic:
 - Only (future) actionable?
 - All pathogenic?
 - What about 'variant of unknown significance'?
- But knowledge is increasing rapidly continuous traning of pathologists and molecular biologists required!
- Approved versus non-approved actionable mutation/drug combinations
 - No standardization in reporting, especially not in case of non-approved targets

NGS : application

Applications in Oncology \rightarrow Clinical practice ???

NGS: variants and much more...

- detection of somatic defects with NGS
- copy number alterations, indels, point mutations, fusions, transcritptomics

NGS Application in Oncology

Applications in Oncology \rightarrow Clinical practice ???

Fusion dectection using AmpliSeq ThermoFisher Scientific

- Archer FusionPlex library prep
- Anchored Multiplex PCR (AMP) technology

 \rightarrow only 1 fusion partner needs to be included in the Archer FusionPlex assay to pick up the other fusion partner gene!

- Archer FusionPlex library prep
- Anchored Multiplex PCR (AMP) technology

		PROS	CONS
	Hybrid-capture	 Characterization of both known and unknown fusion variants of target genes Easily scalable to large gene panels Adequate for DNA and RNA gene fusion analysis At DNA level it does not require RNA purification and allows a simultaneous analysis of different gene variants 	 Higher RNA input than amplicon-based methods Difficulty with fusion variants involving large DNA intronic regions with repetitive sequences
A A	Amplicon-based: <i>Classical multiplex</i> <i>PCR (mPCR)</i> <i>Anchored</i> <i>multiplex PCR</i>	 Low RNA input Particularly effective with small and mid-size panels Analysis of both known and unknown fusion variants of target genes (anchored mPCR) 5' and 3' imbalance evaluation can increase test diagnostic accuracy 	 Not adequate for gene fusion analysis at DNA level Primer design can be complex Characterization of only known fusion variants included in the panel (classical mPCR) PCR bias like allele dropout can impact on analysis result
	A) Hybrid-capture approach Known partner Target gene Capture	B) Classical Amplicon-based approach Known partner Target gene primer primer	C) Anchored multiplex PCR Adapter Known partner Target gene

Known partner Target gene	Known partner Target gene	Adapter Known partner Target gene	
Unknown partner Target gene Capture probe	Unknown partner Target gene	Adapter Unknown partner Target gene	
	Bruno R, et al. I	Diagnostics (Basel). 2020 Ju	

NGS Application in Oncology

Applications in Oncology \rightarrow Clinical practice ???

Coverage

- Sequence <u>coverage</u> (also called "depth") refers to the average number of times a base pair is sequenced in a given experiment.
- ✓ Minimum coverage should be determined during the validation to avoid false negative and false positive results

Coverage

Definition : number of times a nucleotide (or a region) is read during the sequencing process.

3.270 bp	I	25.398.280 bp	1	25.398.290 bp	25.398.300 bp	25.398.280 bp	25.398.290 bp	25.398.
			_					
			Ť			T		
			т				I I	
			T			I I		
								_
			T					
			T					
		A	T					
			T					
			T					
			T					
			Ţ					
						C C T A C G C C A C	C A G C T C C A A C	ТАССАС
						ĸ	RAS	
LCLI								
К	G	V G	G A	G V	V V L			
			NRM0					

<u>Sensitivity = 5%</u>

Coverage 20x -> 1 mutated read ???

Coverage 1000x -> 50 mutated reads

CNV analysis

Nb of sequencing reads per region

CNV analysis ?

• Need validations

– Comparison with FISH gold standard

– Can we detect smaller copy number variation ???

- Size of the panel
 - Number of total regions
 - Number of region per gene

NGS Application in Oncology

- Theoretically:
 - Almost everything is possible
- In Clinical Practice:

Single test Vs WGS

Single test

BRAF V600E 1h30

Single test Vs WGS

Single test	WES	WGS
	Coding sequence A 20 000 genes s • Challenging on FF	Coding AND non coding equence
BRAF V600E 1h30	 Works on frozen t Several 100 ng Blood sequencing Huge bioinformat 	issues in parallel ics needs
	Technical e	Costs TAT expertise

NGS cost does not equal wet lab cost!

Fig. 2. Graph depicting DNA sequencing cost per Mb and genome for past 20 years.

Single test Vs WGS

Single test	NGS targeted panels	WES	WGS		
	Which genes? How many genes? 10? 50? 500?	Coding Coding sequence AND non 20 000 coding genes sequence Challenging on FFPE Works on frozen tissues			
BRAF V600E 1h30		Blood sequerHuge bioinfo	ncing in parallel rmatics needs		
		Techn	Costs TAT ical expertise		

Targeted DNA Sequencing

_	Toble 1. Tr	u Ciabt Tur	mar Canaa			_
		uəigni iui	nor Genes			
	AKT1	EGFR	GNAS	NRAS	STK11	
	ALK	ERBB2	KIT	PDGFRA	TP53	_
	APC	FBXW7	KRAS	PIK3CA		_
	BRAF	FGFR2	MAP2K1	PTEN		
	CDH1	FOXL2	MET	SMAD4		_
	CTNNB1	GNAQ	MSH6	SRC		

Genes selected from NCCN¹ and CAP² guidelines, late-stage clinical trials³, and relevant publications for lung, colon, melanoma, gastric and ovarian⁴.

— Table 1: 1	SACP Can	cer-Related	d Genes —	
ABL1	EGFR	GNAS	MLH1	RET
AKT1	ERBB2	HNF1A	MPL	SMAD4
ALK	ERBB4	HRAS	NOTCH1	SMARCB1
APC	FBXW7	IDH1	NPM1	SMO
ATM	FGFR1	JAK2	NRAS	SRC
BRAF	FGFR2	JAK3	PDGFRA	STK11
CDH1	FGFR3	KDR	PIK3CA	TP53
CDKN2A	FLT3	KIT	PTEN	VHL
CSF1R	GNA11	KRAS	PTPN11	
CTNNB1	GNAQ	MET	RB1	

Cancer-related genes represented in the TSACP. For a full list of target regions, see the manifest file¹ (MyIllumina login required).

The Ion AmpliSeq[™] Cancer Panel targets 50 genes

ABL1	EZH2	JAK3	PTEN
AKT1	FBXW7	IDH2	PTPN11
ALK	FGFR1	KDR	RB1
APC	FGFR2	KIT	RET
ATM	FGFR3	KRAS	SMAD4
BRAF	FLT3	MET	SMARCB1
CDH1	GNA11	MLH1	SM0
CDKN2A	GNAS	MPL	SRC
CSF1R	GNAQ	NOTCH1	STK11
CTNNB1	HNF1A	NPM1	TP53
EGFR	HRAS	NRAS	VHL
ERBB2	IDH1	PDGFRA	
ERBB4	JAK2	PIK3CA]

Ion Ampliseq[™] Colon & lung Panel = 22 genes

AKT1	ERBB2	KRAS	PTEN
ALK	ERBB4	MAP2K1	SMAD4
BRAF	FBXW7	MET	STK11
CTNNB1	FGFR1	NOTCH1	TP53
DDR2	FGFR2	NRAS	
EGFR	FGFR3	PIK3CA	

TSO 500 panel

Lung	Melanoma	Colon	P Ovarian	Breast	Gastric	Bladder	Myeloid	Sarcoma
AKT1 ALK BRAF DDR2 EGFR ERBB2 FGFR1 FGFR3 KRAS MAP2K1 MET NRAS PIK3CA PTEN RET TP53	BRAF CTNNB1 GNA11 GNAQ KIT MAP2K1 NF1 NRAS PDGFRA PIK3CA PTEN TP53	AKT1 BRAF HRAS KRAS MET MLH1 MSH2 MSH6 NRAS PIK3CA PMS2 PTEN SMAD4 TP53	BRAF BRCA1 BRCA2 KRAS PDGFRA FOXL2 TP53	AKT1 AR BRCA1 BRCA2 ERBB2 FGFR1 FGFR2 PIK3CA PTEN	BRAF KIT KRAS MET MLH1 PDGFRA TP53	MSH6 PMS2 TSC1	ABL1 ASXL1 CALR CEBPA ETV6 EZH2 FLT3 GATA2 IDH1 IDH2 JAK2 KIT MPL NPM1 RUNX1 SF3B1 SRSF2 TP53	ALK APC BRAF CDK4 CTNNB1 ETV6 EWSR1 FOX01 GL11 KIT MDM2 MY0D1 NAB2 NF1 PAX3 PAX7 PDGFRA PDGFRB SDHB SDHC SMARCB1 TFE3 WT1

Limitations

- Samples characteristics
 - Quantity : small biopsy, cytology
 - Quality : FFPE -> DNA/RNA integrity (short DNA/RNA fragments)
- Inherent characteristics of tumor samples
 - Contamination with normal tissue
 - Aneuploidy
 - Tumor heterogeneity
 - Low frequency variant detection
 - High coverage necessity

Limitations

- TAT
 - wet-bench (from sample reception to sequencing : 3-4 days)
 - dry-bench (4 24 hours)
 - Analysis
 - Answer within 10 working days
- COST
 - INAMI/RIZIV reimbursement

Technical issues to consider while reporting (1)

- ✓ Type of starting material difficult tissues
- Composition of the starting material macrodissection may have been necessary to enrich the neoplastic tissue zone
- ✓ Neoplastic cell percentage whithin the neoplastic tissue zone (e.g. background of normal cells)
 - Minimum required (e.g. 10 %, determined by the limit of detection of NGS (often +/- 5 %))
- ✓ Complicating issues:
 - Intratumor heterogeneity
 - ✓ Distinct clones and subclones
 - \checkmark Particular mutation may be present in only part of the neoplastic cells
 - ✓ May explain differential response to therapy
 - Neoplastic cells are often hyperdiploid: higher DNA content compared to background normal cells

Technical issues to consider while reporting (2)

\checkmark DNA yield and quality

- Highly variable
- Look at deamination
- ✓ Coverage read depth
 - Determines sensitivity of the analysis
 - Minimum required for optimal sensitivity and specificity (e.g. 500 x)
- ✓ Variant allele frequency (VAF)
 - % of DNA sequences with the mutation
 - Consider all the above when interpreting VAF

!!! Take care of ... !!!

Difficult samples

Intra-tumor heterogeneity

Nature Reviews | Cancer

- Different (sub)clones in one tumor
- Importance of sampling impact on mutation profile and VAFs (potential of liquid biopsy!)
- Different mutations in a single sample may have different VAFs

Source: Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12(5):323-34. 99

Present and Future applications

- ✓ Oncogenic driver identification and resistance detection
- ✓ Mutational burden for sensitivity detection to immunotherapy
- ✓ RNA-seq, Epigenetic changes,
- ✓ Early cancer screening (liquid biopsy)

Article 33 bis de la nomenclature

587915	587926	"A.R. 17.5.2019" (en vigueur 1.7.2019) Dépistage d'une mutation ponctuelle acquise au moyen d'une méthode de biologie moléculaire dans la phase d'investigation diagnostique d'une tumeur solide non		
		lymphoïde et non-myéloïde	В	1800
		(Règle de cumul 5) (Règle diagnostique 1, 13)"	79	euros
		"A.R. 7.6.2007" (en vigueur 1.8.2007) + "A.R. 4.5.2010" (en vigueur 1 "A.R. 17.5.2019" (en vigueur 1.7.2019)	1.8.2	010) +
588534	588545	Dépistage d'anomalies chromosomiques ou géniques acquises à l'exception d'une mutation ponctuelle au moyen d'une méthode de biologie moléculaire, dans la phase d'investigation diagnostique d'une tumeur solide non-		
		lymphoïde et non-myéloïde	в	3000
		"(Règle de cumul 5) (Règle diagnostique 1, 13)"	13	2 euros

B= 0.044

- concept:
 - NEW article 33ter:
 - new "generic" nomenclature codes for predictive tests linked to a drug (diagnostic/prognostic: article 33bis)
 - defined by TMC
 - published by royal decree
 - NEW chapter "VIII":
 - list of "personalised" drugs
 - + list with "companion" tests

if the Minister decides to reimburse the drug, the marker will be added to the list by the same Ministerial Decree

methodology

- providers: idem art 33bis
 - Clinical biology
 - Pathology
 - Centre for human genetics
- content: end-to-end process
- quality: ISO15189 + control by ISP-WIV + EQA
- fee: 3 levels of complexity
 - complexity of test
 - complexity of sample
 - prevalence
 - consistent with existing nomenclature 33 and 33bis

Level 1: 88 euros Level 2: 147 euros Level 3: 196 euros

methodology

- follow-up: separate codes
- diagnostic rules:
 - 1/diagnostic phase
 - follow-up: 1/follow-up period
- cumulative rules:
 - on the list for art33ter = tarification through 33ter
 - no double tarification (with 33bis)
- registration mandatory
 - start with "light" registry
 - reports for data providers, health insurance and
 - future: link with MOC/COM and outcome data

Annexe 4 : Modalités de financement pour 2022

Les honoraires ont été ajustés dès 1/1/2020 conformément à l'Accord national médico-mutualiste 2020 (1,25%). Cela était de nouveau ajusté à partir du 1/1/2021 conformément à l'Accord national médico-mutualiste 2021 (0,80%) et à partir du 1/1/2022 conformément à l'Accord national médico-mutualiste 2021 (0,73%).

Le remboursement total initiale de 350 € a été ajusté à l'indice santé (1,95%) à 356,83 € dès 1/1/2020, conformément à l'article 3 de la Convention. Cela était de nouveau ajusté à partir du 1/1/2021 avec 1,01% à 360,43 € et à partir du 1/1/2022 avec 0,79% à 363,28 €. Le remboursement total de 550 € pour RNA-seq était ajusté à partir du 1/1/2021 avec 1,01%, à 555.56 € et à partir du 1/1/2022 avec 0,79%, à 559.95 €.

Le montant complémentaire est la différence entre les deux montants.

Indicatie/Indication	Art33ter		Art33bis		Honorarium	Toeslag in	Populatie aan
					in Euro/	Euro/Montant	100%/
					Honoraire	Complémentaire	Population à
					en Euro	en Euro	100%
Gemetastaseerd Colorectaal	594053- 594064	B3000	587915-587926	B1800	224.42	136.01	3000
carcinoma					226,06	137.22	
Carcinome colorectal métastatique							
Gevorderd-Adenocarcinoma Long	594053-594064	B3000	588534-588545	B3000+	356.43	4.00	5600
Adénocarcinome pulmonaire avancé			587915-587926	B1800	359.04	<mark>4.24</mark>	
Long: progressie binnen 1j na positief					0	360.43	180
advies MOC						363.28	
Poumon : progression avant 1 an							
après avis positif d'une COM							
Long zonder driver mutatie (RNA-seq)	594090-594101	B4000			387.2 4	168.32	1800
Poumon sans mutation driver (RNA-	(ROS, ALK, 2x				390.06	(totaal 555.56€)	
seq)	niveau 3)					169.89	
						(totaal 559.95€)	

In Belgium: ComPerMed

Commission de Médecine Personnalisée

"Take home" message

NGS interpretation – NOT so EASY

- ✓ Interpreting NGS data requires a **team approach**
- ✓ Understanding the clinical context and how NGS report may impact the management of the patient is critical
- ✓ Each case is UNIQUE
- ✓ Each variant must be interpreted in the context of the tumor type
- ✓ Lot of variables can impact the result (pre-analytic, analytic, postanalytic)
- ✓ Be always **CRITICAL** with the results

=> Advice for <u>CLINICAL</u> interpretation : **STAY ON THE GROOMED TRAILS**

