Molecular pathology course for residents in pathology

An introduction to cell biology

N. Van Roy (University of Ghent)

1

Constituents of the human body

body=10¹⁴ cells

How do we obtain so many cells ?

Interfase=G1+S+G2

Cell cycle ~24 hr

The cell's interior

CHROMOSOMES

 "coloured bodies" *chroma*: colour soma: body
 only visible during cell <u>division</u>

DNA : molecule of life

The human genome

 DNA in mitochondria (prokaryotic): mtDNA: localized in mitochondria (= structures/organells in eukaryotic cells that convert food to energy).

DNA in nucleus (nuclear genome):
 23 pair chromosomes:
 22 pair autosomes (1-22)
 2 sex chromosomes (X and Y)
 22.000 genes
 3 billion bp or 6 billion nucleotides

The human genome reads like a book

The human genome

- total: 3 billion bp, ~19.000 genes
- gene sequences: ~5%

exons: 1.5%

introns: 3.5%

- chromosome 1: 250Mb
- chromosome 22: 50Mb
- gene: about 3.000 bp
- function of ~50% of the genes is unknown
- 'junk' DNA: ~95%
- 'repeats' : >50%
- Iow variability: 99,8% identical between individuals
- variation: per 10 million (SNPs)
- mean: 3 million differences between 2 individuals

Variations in genomes

99,8%: 0,2% = 6 miljoen verschillen

Organisation of genomes: number of genes/chromosomes says nothing about complexity of an organism

organism	genome	number genes	agreement
bacterie	4,6 million bp	~4.500	-
fruitfly	165 million bp	~13.600	50%
human	3 billion bp	~19.000	100%
mouse	3 billion bp	~30.000	~90%
plant	125 million bp	~25.000	-
worm	97 million bp	19.099	40%
yeast	12 million bp	~6.000	31%

Human:

- Small number of genes !
- Genome with complex structure

DNA, carrier of genetic information

- DNA = deoxyribonucleic acid
- DNA = polymer of nucleotides
- nucleotide:
 - Pentose sugar (5C) (deoxyribose)
 - N-containing bases:
- nucleoside Cytosine (C) and thymine (T) (pyrimidines)
 - Adenine (A) and guanine (G) (purines)
 - phosphorgroup

The organic bases

nucleotides polymerise via 3'-5' phosphodiësterbounds in polynucleotide chains

Nucleotides can pair via their bases

DNA consists of 2 chains of nucleotides

Double helix structure

DNA is basically a very long linear structure

Altogether, unwind chromosomes correspond to 2 meter of "linear" DNA housed into $\sim 4 \times 10^{-18}$ m³ nucleus

DNA has to be packed

Chromosome: extremely compacted DNA

DNA strand wound around protein complex

= nucleosome (turn of 1 DNA chain; ± 200 bp) comparable to beads on a string

Cristal structure of nucleosome core particle consisting of histones (= proteins: H2A, H2B, H3 en H4) and DNA

Nucleosome (DNA in yellow histones in blue)

10 nm

Chromatin structure

central dogma of molecular biology

DNA replication

DNA replication

DNA replication

- During the S fase of the cell cycle DNA is copied and transmitted to 2 daughter cells
- complementary DNA strands open up at the origins of replication with use of DNA helicase
- DNA polymerase makes new strand
- DNA polymerase assist in 3'-5' phosphodiesterbounds
 On 1 strand: continous process (leading strand)
 On other strand: Okazaki fragments (lagging strand)
- DNA ligase unites Okazaki fragments
- DNA replication is semiconservative: 1 new strand and 1 old strand, 1 error in 10⁹ copied bases

Central dogma of molecular biology

From DNA to RNA: transcription

Further: http://www.youtube.com/watch?v=WsofH466lqk

Transcription

1) binding of transcription factors in promotor region

- 2) binding of RNA polymerase with initiation of transcription
- 3) the "anti-sense strand" is read from 3'→ 5'. The complementary, non-copied DNA strand is called "sense strand" because of the resemblence with the mRNA strand
- 4) the RNA strand is produced in $5' \rightarrow 3'$ direction

Génétique moléculaire humaine – Strachan et Read 4th ed 2012

Promotor

=promotor region contains following sequences:

- TATA box (TATAAA) on position -25 à -30 - CCAAT box on position -80
 - GC box (GGGCGG) -100 à 150
 - other enhancers further upstream

cis-acting elements

Transcription factors trans-acting elements

"housekeeping" genes

Gene expression is a tightly regulated process

Post-transcriptional modifications of mRNA

1) capping and 2) polyadenylation

Posttranscriptional modifications of mRNA

3) RNA splicing

Epigenetic alterations

Epigenetic alterations

The figure illustrates nucleosome models and major posttranslational modifications which play essential roles in gene expression regulation and disease processes

Modification	Structure	Charge	Effect
Methylation	R-CH ₃	Neutral	packaging
Acetylation	R-COCH ₃	Negatif	packaging
Phosphorylation	R-PO ₄	Negatif	packaging

Central dogma of molecular biology

From RNA to protein: translation

Translation

Initiation of translation

http://kvhs.nbed.nb.ca/gallant/biology/translation_initiation.html

http://www.allesoverdna.nl/woordenboek/transcriptie.html

Elongation polypeptide chain

Termination of translation

http://www.bio.miami.edu/dana/250/250SS13_9print.html

Translation

- mRNA is transcribed from 5' to 3' by ribosomes
- per codon (3 bases) an amino acid is incorporated into the carboxyterminal side of the growing protein chain
- codon on mRNA is recognized by anticodon on the tRNA
- the genetic alfabet consists of 4 letters (A;T;G;C); and there are 20 different amino acids (AA). Thus: 4³ possible codons for 20 AA: 'the genetic code is degenerate'
- 3 stopcodons (TAA, TAG, TGA)
- 1 startcodon (ATG = methionine)
- only 1 codon for tryptophan and methionine

Take home messages

- The DNA is composed of 4 nucleotides
- Chromosomes are condensed (mitotic) state of the DNA
- Non-covalent chemical forces between the nucleotides and interaction with proteins

determine the well-organized DNA structure

- 1-5% of the human genome code for proteins
- Each chromosome and gene comes in pairs
- Gene expression is tightly controlled either by DNA topology and/or proteins
- Cell fate/differentiation and function is governed by gene expression patterns
- Modification in the DNA structure or abnormal gene expression might lead to disease